Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair.

نویسندگان

  • Junran Zhang
  • Henning Willers
  • Zhihui Feng
  • Jagadish C Ghosh
  • Sang Kim
  • David T Weaver
  • Jay H Chung
  • Simon N Powell
  • Fen Xia
چکیده

The pathway determining malignant cellular transformation, which depends upon mutation of the BRCA1 tumor suppressor gene, is poorly defined. A growing body of evidence suggests that promotion of DNA double-strand break repair by homologous recombination (HR) may be the means by which BRCA1 maintains genomic stability, while a role of BRCA1 in error-prone nonhomologous recombination (NHR) processes has just begun to be elucidated. The BRCA1 protein becomes phosphorylated in response to DNA damage, but the effects of phosphorylation on recombinational repair are unknown. In this study, we tested the hypothesis that the BRCA1-mediated regulation of recombination requires the Chk2- and ATM-dependent phosphorylation sites. We studied Rad51-dependent HR and random chromosomal integration of linearized plasmid DNA, a subtype of NHR, which we demonstrate to be dependent on the Mre11-Rad50-Nbs1 complex. Prevention of Chk2-mediated phosphorylation via mutation of the serine 988 residue of BRCA1 disrupted both the BRCA1-dependent promotion of HR and the suppression of NHR. Similar results were obtained when endogenous Chk2 kinase activity was inhibited by expression of a dominant-negative Chk2 mutant. Surprisingly, the opposing regulation of HR and NHR did not require the ATM phosphorylation sites on serines 1423 and 1524. Together, these data suggest a functional link between recombination control and breast cancer predisposition in carriers of Chk2 and BRCA1 germ line mutations. We propose a dual regulatory role for BRCA1 in maintaining genome integrity, whereby BRCA1 phosphorylation status controls the selectivity of repair events dictated by HR and error-prone NHR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA-PKcs activates the Chk2–Brca1 pathway during mitosis to ensure chromosomal stability

The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is known to have a critical role in DNA double-strand break repair. We have previously reported that DNA-PKcs is activated when cells enter mitosis and functions in mitotic spindle assembly and chromosome segregation. Here we report that DNA-PKcs is the upstream regulator of the Chk2-Brca1 pathway, which impacts microtubule dynami...

متن کامل

Checkpoint kinase 2-mediated phosphorylation of BRCA1 regulates the fidelity of nonhomologous end-joining.

The tumor suppressor gene BRCA1 maintains genomic integrity by protecting cells from the deleterious effects of DNA double-strand breaks (DSBs). Through its interactions with the checkpoint kinase 2 (Chk2) kinase and Rad51, BRCA1 promotes homologous recombination, which is typically an error-free repair process. In addition, accumulating evidence implicates BRCA1 in the regulation of nonhomolog...

متن کامل

Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation.

Mutations of CSB account for the majority of Cockayne syndrome (CS), a devastating hereditary disorder characterized by physical impairment, neurological degeneration and segmental premature aging. Here we report the generation of a human CSB-knockout cell line. We find that CSB facilitates HR and represses NHEJ. Loss of CSB or a CS-associated CSB mutation abrogating its ATPase activity impairs...

متن کامل

Ataxia telangiectasia mutated and checkpoint kinase 2 regulate BRCA1 to promote the fidelity of DNA end-joining.

Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are the two mechanisms responsible for repairing DNA double-strand breaks (DSBs) and act in either a collaborative or competitive manner in mammalian cells. DSB repaired by NHEJ may be more complicated than the simple joining of the ends of DSB, because, if nucleotides were lost, it would result in error-prone repair. This has l...

متن کامل

RNF4 regulates DNA double-strand break repair in a cell cycle-dependent manner

Both RNF4 and KAP1 play critical roles in the response to DNA double-strand breaks (DSBs), but the functional interplay of RNF4 and KAP1 in regulating DNA damage response remains unclear. We have previously demonstrated the recruitment and degradation of KAP1 by RNF4 require the phosphorylation of Ser824 (pS824) and SUMOylation of KAP1. In this report, we show the retention of DSB-induced pS824...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 24 2  شماره 

صفحات  -

تاریخ انتشار 2004